Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 482, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228616

RESUMO

Molecular-glue degraders are small molecules that induce a specific interaction between an E3 ligase and a target protein, resulting in the target proteolysis. The discovery of molecular glue degraders currently relies mostly on screening approaches. Here, we describe screening of a library of cereblon (CRBN) ligands against a panel of patient-derived cancer cell lines, leading to the discovery of SJ7095, a potent degrader of CK1α, IKZF1 and IKZF3 proteins. Through a structure-informed exploration of structure activity relationship (SAR) around this small molecule we develop SJ3149, a selective and potent degrader of CK1α protein in vitro and in vivo. The structure of SJ3149 co-crystalized in complex with CK1α + CRBN + DDB1 provides a rationale for the improved degradation properties of this compound. In a panel of 115 cancer cell lines SJ3149 displays a broad antiproliferative activity profile, which shows statistically significant correlation with MDM2 inhibitor Nutlin-3a. These findings suggest potential utility of selective CK1α degraders for treatment of hematological cancers and solid tumors.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular , Neoplasias/tratamento farmacológico , Proteólise , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Mol Cell ; 83(23): 4239-4254.e10, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38065062

RESUMO

A common mRNA modification is 5-methylcytosine (m5C), whose role in gene-transcript processing and cancer remains unclear. Here, we identify serine/arginine-rich splicing factor 2 (SRSF2) as a reader of m5C and impaired SRSF2 m5C binding as a potential contributor to leukemogenesis. Structurally, we identify residues involved in m5C recognition and the impact of the prevalent leukemia-associated mutation SRSF2P95H. We show that SRSF2 binding and m5C colocalize within transcripts. Furthermore, knocking down the m5C writer NSUN2 decreases mRNA m5C, reduces SRSF2 binding, and alters RNA splicing. We also show that the SRSF2P95H mutation impairs the ability of the protein to read m5C-marked mRNA, notably reducing its binding to key leukemia-related transcripts in leukemic cells. In leukemia patients, low NSUN2 expression leads to mRNA m5C hypomethylation and, combined with SRSF2P95H, predicts poor outcomes. Altogether, we highlight an unrecognized mechanistic link between epitranscriptomics and a key oncogenesis driver.


Assuntos
Leucemia , Síndromes Mielodisplásicas , Neoplasias , Metilação de RNA , Fatores de Processamento de Serina-Arginina , Humanos , Leucemia/genética , Síndromes Mielodisplásicas/genética , Neoplasias/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Metilação de RNA/genética
4.
Methods Enzymol ; 681: 81-113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36764765

RESUMO

The discovery of new PROTAC molecules is dependent on robust and high-throughput assays to measure PROTAC-protein interactions and ternary complex formation. Here we present the optimization and execution of Lumit Immunoassays to measure PROTAC binding and ternary complex formation in a biochemical format. We demonstrate how Lumit can be used to rank order affinities of small molecules and PROTACs to BRD4(BD1, BD2) and how to measure PROTAC-mediated ternary complex formation of BRD4(BD1, BD2) and E3 Ligase VHL. Results from both biochemical assays correlate with live and lytic cell assays, indicating that Lumit Immunoassays can be used as a high-throughput compatible screening methodology to test new small molecules.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Bibliotecas de Moléculas Pequenas/química , Ubiquitina-Proteína Ligases/metabolismo , Imunoensaio , Proteólise
5.
Chem Soc Rev ; 51(14): 6210-6221, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35792307

RESUMO

Targeted protein degradation has exploded over the past several years due to preclinical and early clinical therapeutic success of numerous compounds, and the emergence of new degradation modalities, which has broadened the definition of what a degrader is. The most characterized and well-studied small molecule degraders are molecular glues and proteolysis targeting chimeras (PROTACs). These degraders induce a ternary complex between a target protein, degrader, and E3 ligase component, resulting in ubiquitination and subsequent degradation of the target protein via the ubiquitin proteasomal system (UPS). This event-driven process requires success at all steps through a complex cascade of events. As more systems, degraders, and targets are tested, it has become increasingly clear that achieving degradation is only the first critical milestone in a degrader development program. Rather highly efficacious degraders require a combination of multiple optimized parameters: rapid degradation, high potency, high maximal degradation (Dmax), and sustained loss of target without re-dosing. Success to meet these more rigorous goals depends upon the ability to characterize and understand the dynamic cellular degradation profiles and relate them to the underlying mechanism for any given target treated with a specific concentration of degrader. From this starting point, optimization and fine tuning of multiple kinetic parameters such as how fast degradation occurs (the rate), how much of the target is degraded (the extent), and how long the target remains degraded (the duration) can be performed. In this review we explore the diversity of cellular kinetic degradation profiles which can arise after molecular glue and PROTAC treatment and the potential implications of these varying responses. As the overall degradation kinetics are a sum of individual mechanistic steps, each with their own kinetic contributions, we discuss the ways in which changes at any one of these steps could potentially influence the resultant kinetic degradation profiles. Looking forward, we address the importance in characterizing the kinetics of target protein loss in the early stages of degrader design and how this will enable more rapid discovery of therapeutic agents to elicit desired phenotypic outcomes.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Cinética , Proteínas/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
6.
J Biol Chem ; 298(4): 101653, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35101445

RESUMO

PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."


Assuntos
Modelos Moleculares , Ubiquitina-Proteína Ligases , Ubiquitinação , Células HEK293 , Humanos , Estrutura Terciária de Proteína , Proteólise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
7.
Cell Chem Biol ; 29(2): 287-299.e8, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34520747

RESUMO

Contemporary drug discovery typically quantifies the effect of a molecule on a biological target using the equilibrium-derived measurements of IC50, EC50, or KD. Kinetic descriptors of drug binding are frequently linked with the effectiveness of a molecule in modulating a disease phenotype; however, these parameters are yet to be fully adopted in early drug discovery. Nanoluciferase bioluminescence resonance energy transfer (NanoBRET) can be used to measure interactions between fluorophore-conjugated probes and luciferase fused target proteins. Here, we describe an intracellular NanoBRET competition assay that can be used to quantify cellular kinetic rates of compound binding to nanoluciferase-fused bromodomain and extra-terminal (BET) proteins. Comparative rates are generated using a cell-free NanoBRET assay and by utilizing orthogonal recombinant protein-based methodologies. A screen of known pan-BET inhibitors is used to demonstrate the value of this approach in the investigation of kinetic selectivity between closely related proteins.


Assuntos
Luciferases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Superfície Celular/metabolismo , Sítios de Ligação , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Células Cultivadas , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Cinética , Luciferases/química , Proteínas do Tecido Nervoso/química , Receptores de Superfície Celular/química
8.
Nat Chem Biol ; 17(11): 1157-1167, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34675414

RESUMO

Bivalent proteolysis-targeting chimeras (PROTACs) drive protein degradation by simultaneously binding a target protein and an E3 ligase and forming a productive ternary complex. We hypothesized that increasing binding valency within a PROTAC could enhance degradation. Here, we designed trivalent PROTACs consisting of a bivalent bromo and extra terminal (BET) inhibitor and an E3 ligand tethered via a branched linker. We identified von Hippel-Lindau (VHL)-based SIM1 as a low picomolar BET degrader with preference for bromodomain containing 2 (BRD2). Compared to bivalent PROTACs, SIM1 showed more sustained and higher degradation efficacy, which led to more potent anticancer activity. Mechanistically, SIM1 simultaneously engages with high avidity both BET bromodomains in a cis intramolecular fashion and forms a 1:1:1 ternary complex with VHL, exhibiting positive cooperativity and high cellular stability with prolonged residence time. Collectively, our data along with favorable in vivo pharmacokinetics demonstrate that augmenting the binding valency of proximity-induced modalities can be an enabling strategy for advancing functional outcomes.


Assuntos
Ubiquitina-Proteína Ligases/metabolismo , Humanos , Proteólise
9.
Methods Mol Biol ; 2365: 151-171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432243

RESUMO

Heterobifunctional small-molecule degraders known as Proteolysis Targeting Chimeras (PROTACs) serve as a chemical bridge bringing into direct association a target protein with an active E3 ligase complex, called the ternary complex, to facilitate targeted protein degradation. This ternary complex formation is the first key mechanistic step in a cascade of events that results in ubiquitination and subsequent degradation of the target protein via the ubiquitin-proteasome pathway. The ternary complex, however, is a nonnative cellular complex; therefore, PROTAC compound design has many challenges to overcome to ensure successful formation, including achieving structural and electrostatic favorability among target and ligase. Due to these challenges, finding successful PROTACs typically requires testing of extensive libraries of heterobifunctional compounds with varying linkers and E3 handles. As PROTAC ternary complex formation is also critically dependent on cellular context, live cell assays and technologies for rapid and robust screening are highly enabling for triaging of early stage compounds. Here, we present cellular assays utilizing NanoBRET technology for the study of ternary complexes, showing examples with two most popular PROTAC E3 ligase components, VHL (von Hippel-Lindau disease tumor suppressor) and CRBN (Cereblon). These assays can be run in either endpoint or real-time kinetic formats, are compatible with high-throughput workflows, and provide insight into how altering the PROTAC chemical composition affects the formation and stability of the ternary complex in live cells.


Assuntos
Proteólise , Ubiquitina-Proteína Ligases , Sobrevivência Celular , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Nanotecnologia
10.
Nat Chem Biol ; 17(6): 675-683, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33753926

RESUMO

Cyclin-dependent kinase 12 (CDK12) is an emerging therapeutic target due to its role in regulating transcription of DNA-damage response (DDR) genes. However, development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. In the present study, we report the rational design and characterization of a CDK12-specific degrader, BSJ-4-116. BSJ-4-116 selectively degraded CDK12 as assessed through quantitative proteomics. Selective degradation of CDK12 resulted in premature cleavage and poly(adenylation) of DDR genes. Moreover, BSJ-4-116 exhibited potent antiproliferative effects, alone and in combination with the poly(ADP-ribose) polymerase inhibitor olaparib, as well as when used as a single agent against cell lines resistant to covalent CDK12 inhibitors. Two point mutations in CDK12 were identified that confer resistance to BSJ-4-116, demonstrating a potential mechanism that tumor cells can use to evade bivalent degrader molecules.


Assuntos
Quinases Ciclina-Dependentes/efeitos dos fármacos , Animais , Dano ao DNA/genética , Desenho de Fármacos , Descoberta de Drogas , Resistência a Medicamentos , Humanos , Poli A/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteômica
11.
SLAS Discov ; 26(4): 560-569, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33190579

RESUMO

Targeted protein degradation using heterobifunctional proteolysis-targeting chimera (PROTAC) compounds, which recruit E3 ligase machinery to a target protein, is increasingly becoming an attractive pharmacologic strategy. PROTAC compounds are often developed from existing inhibitors, and assessing selectivity is critical for understanding on-target and off-target degradation. We present here an in-depth kinetic degradation study of the pan-kinase PROTAC, TL12-186, applied to 16 members of the cyclin-dependent kinase (CDK) family. Each CDK family member was endogenously tagged with the 11-amino-acid HiBiT peptide, allowing for live cell luminescent monitoring of degradation. Using this approach, we found striking differences and patterns in kinetic degradation rates, potencies, and Dmax values across the CDK family members. Analysis of the responses revealed that most of the CDKs showed rapid and near complete degradation, yet all cell cycle-associated CDKs (1, 2, 4, and 6) showed multimodal and partial degradation. Further mechanistic investigation of the key cell cycle protein CDK2 was performed and revealed CDK2 PROTAC-dependent degradation in unsynchronized or G1-arrested cells but minimal loss in S or G2/M arrest. The ability of CDK2 to form the PROTAC-mediated ternary complex with CRBN in only G1-arrested cells matched these trends, despite binding of CDK2 to TL12-186 in all phases. These data indicate that target subpopulation degradation can occur, dictated by the formation of the ternary complex. These studies additionally underscore the importance of profiling degradation compounds in cellular systems where complete pathways are intact and target proteins can be characterized in their relevant complexes.


Assuntos
Bioensaio , Ciclo Celular/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Oxindóis/farmacologia , Piperidinas/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/genética , Células HEK293 , Humanos , Cinética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ligação Proteica , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
12.
Curr Protoc Pharmacol ; 91(1): e81, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332748

RESUMO

To assess the role of a protein, protein loss phenotypic studies can be used, most commonly through mutagenesis RNAi or CRISPR knockout. Such studies have been critical for the understanding of protein function and the identification of putative therapeutic targets for numerous human disease states. However, these methodological approaches present challenges because they are not easily reversible, and if an essential gene is targeted, an associated loss of cell viability can potentially hinder further studies. Here we present a reversible and conditional live-cell knockout strategy that is applicable to numerous proteins. This modular protein-tagging approach regulates target loss at the protein, rather than the genomic, level through the use of HaloPROTAC3, which specifically degrades HaloTag fusion proteins via recruitment of the VHL E3 ligase component. To enable HaloTag-mediated degradation of endogenous proteins, we provide protocols for HaloTag genomic insertion at the protein N or C terminus via CRISPR/Cas9 and use of HaloTag fluorescent ligands to enrich edited cells via Fluorescence-Activated Cell Sorting (FACS). Using these approaches, endogenous HaloTag fusion proteins present in various subcellular locations can be degraded by HaloPROTAC3. As detecting the degradation of endogenous targets is challenging, the 11-amino-acid peptide tag HiBiT is added to the HaloTag fusion to allows the sensitive luminescence detection of HaloTag fusion levels without the use of antibodies. Lastly, we demonstrate, through comparison of HaloPROTAC3 degradation with that of another fusion tag PROTAC, dTAG-13, that HaloPROTAC3 has a faster degradation rate and similar extent of degradation. © 2020 The Authors. Basic Protocol 1: CRISPR/Cas9 insertion of HaloTag or HiBiT-HaloTag Basic Protocol 2: HaloPROTAC3 degradation of endogenous HaloTag fusions.


Assuntos
Sistemas CRISPR-Cas , Proteólise , Proteínas Recombinantes de Fusão/química , Linhagem Celular , Eletroporação , Humanos
13.
J Vis Exp ; (165)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226022

RESUMO

Targeted protein degradation compounds, including molecular glues or proteolysis targeting chimeras, are an exciting new therapeutic modality in small molecule drug discovery. This class of compounds induces protein degradation by bringing into proximity the target protein and the E3 ligase machinery proteins required to ubiquitinate and ultimately degrade the target protein through the ubiquitin-proteasomal pathway (UPP). Profiling of target protein degradation in a high-throughput fashion, however, remains highly challenging given the complexity of cellular pathways required to achieve degradation. Here we present a protocol and screening strategy based on the use of CRISPR/Cas9 endogenous tagging of target proteins with the 11 amino acid HiBiT tag which complements with high affinity to the LgBiT protein, to produce a luminescent protein. These CRISPR targeted cell lines with endogenous tags can be used to measure compound induced degradation in either real-time, kinetic live cell or endpoint lytic modes by monitoring luminescent signal using a luminescent plate-based reader. Here we outline the recommended screening protocols for the different formats, and also describe the calculation of key degradation parameters of rate, Dmax, DC50, Dmax50, as well as multiplexing with cell viability assays. These approaches enable rapid discovery and triaging of early stage compounds while maintaining endogenous expression and regulation of target proteins in relevant cellular backgrounds, allowing for efficient optimization of lead therapeutic compounds.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Ensaios de Triagem em Larga Escala , Proteólise , Adesão Celular , Linhagem Celular , Sobrevivência Celular , Fluorescência , Células HEK293 , Humanos , Cinética , Ubiquitinação
14.
Drug Discov Today Technol ; 31: 61-68, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31200861

RESUMO

A new series of therapeutic modalities resulting in degradation of target proteins, termed proteolysis targeting chimeras (PROTACs), hold significant therapeutic potential with possible prolonged pharmacodynamics, improved potency, and ability to target proteins previously thought of as "undruggable". PROTACs are heterobifunctional small molecules consisting of a target binding handle bridged via a chemical linker to an E3 ligase handle which recruit the E3 ligase and ubiquitin machinery to target proteins, resulting in subsequent ubiquitination and degradation of the target. With the generation of small molecule PROTAC compound libraries for drug discovery, it becomes essential to have sensitive screening technologies to rapidly profile activity and have assays which can clearly inform on performance at the various cellular steps required for PROTAC-mediated degradation. For PROTAC compounds, this has been particularly challenging using either biochemical or cellular assay approaches. Biochemical assays are highly informative for the first part of the degradation process, including optimization of compound binding to targets and interrogation of target:PROTAC:E3 ligase ternary complex formation, but struggle with the remaining steps; recruitment of ternary complex into larger active E3 ligase complexes, ubiquitination, and proteasomal degradation. On the other hand, cellular assays are excellent at determining if the PROTAC successfully degrades the target in its relevant setting but struggle as early development PROTAC compounds are often poorly cell-permeable given their high molecular weight. Additionally, if degradation is not observed in a cellular assay, it is difficult to deconvolute the reason why or at which step there was failure. In this review we will highlight the current approaches along with recent advances to overcome the challenges faced for cellular PROTAC screening, which will enable and advance drug discovery of therapeutic degradation compounds.


Assuntos
Proteólise , Descoberta de Drogas , Proteínas/metabolismo
15.
J Med Chem ; 62(2): 699-726, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30540463

RESUMO

Developing PROTACs to redirect the ubiquitination activity of E3 ligases and potently degrade a target protein within cells can be a lengthy and unpredictable process, and it remains unclear whether any combination of E3 and target might be productive for degradation. We describe a probe-quality degrader for a ligase-target pair deemed unsuitable: the von Hippel-Lindau (VHL) and BRD9, a bromodomain-containing subunit of the SWI/SNF chromatin remodeling complex BAF. VHL-based degraders could be optimized from suboptimal compounds in two rounds by systematically varying conjugation patterns and linkers and monitoring cellular degradation activities, kinetic profiles, and ubiquitination, as well as ternary complex formation thermodynamics. The emerged structure-activity relationships guided the discovery of VZ185, a potent, fast, and selective degrader of BRD9 and of its close homolog BRD7. Our findings qualify a new chemical tool for BRD7/9 knockdown and provide a roadmap for PROTAC development against seemingly incompatible target-ligase combinations.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Desenho de Fármacos , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Cromossômicas não Histona/química , Células HeLa , Humanos , Cinética , Ligação Proteica , Proteólise , Proteoma/análise , Relação Estrutura-Atividade , Termodinâmica , Fatores de Transcrição/química , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/química
16.
ACS Chem Biol ; 13(9): 2758-2770, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30137962

RESUMO

A new generation of heterobifunctional small molecules, termed proteolysis targeting chimeras (PROTACs), targets proteins for degradation through recruitment to E3 ligases and holds significant therapeutic potential. Despite numerous successful examples, PROTAC small molecule development remains laborious and unpredictable, involving testing compounds for end-point degradation activity at fixed times and concentrations without resolving or optimizing for the important biological steps required for the process. Given the complexity of the ubiquitin proteasomal pathway, technologies that enable real-time characterization of PROTAC efficacy and mechanism of action are critical for accelerating compound development, profiling, and improving guidance of chemical structure-activity relationship. Here, we present an innovative, modular live-cell platform utilizing endogenous tagging technologies and apply it to monitoring PROTAC-mediated degradation of the bromodomain and extra-terminal family members. We show comprehensive real-time degradation and recovery profiles for each target, precisely quantifying degradation rates, maximal levels of degradation ( Dmax), and time frame at Dmax. These degradation metrics show specific PROTAC and family member-dependent responses that are closely associated with the key cellular protein interactions required for the process. Kinetic studies show cellular ternary complex stability influences potency and degradation efficacy. Meanwhile, the level of ubiquitination is highly correlated to degradation rate, indicating ubiquitination stemming from productive ternary complex formation is the main driver of the degradation rate. The approaches applied here highlight the steps at which the choice of E3 ligase handle can elicit different outcomes and discern individual parameters required for degradation, ultimately enabling chemical design strategies and rank ordering of potential therapeutic compounds.


Assuntos
Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Cinética
17.
Biochem Pharmacol ; 136: 62-75, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28392095

RESUMO

Vascular endothelial growth factor (VEGF) is an important mediator of angiogenesis. Here we have used a novel stoichiometric protein-labeling method to generate a fluorescent variant of VEGF (VEGF165a-TMR) labeled on a single cysteine within each protomer of the antiparallel VEGF homodimer. VEGF165a-TMR has then been used in conjunction with full length VEGFR2, tagged with the bioluminescent protein NanoLuc, to undertake a real time quantitative evaluation of VEGFR2 binding characteristics in living cells using bioluminescence resonance energy transfer (BRET). This provided quantitative information on VEGF-VEGFR2 interactions. At longer incubation times, VEGFR2 is internalized by VEGF165a-TMR into intracellular endosomes. This internalization can be prevented by the receptor tyrosine kinase inhibitors (RTKIs) cediranib, sorafenib, pazopanib or vandetanib. In the absence of RTKIs, the BRET signal is decreased over time as a consequence of the dissociation of agonist from the receptor in intracellular endosomes and recycling of VEGFR2 back to the plasma membrane.


Assuntos
Sistemas Computacionais , Endocitose/fisiologia , Corantes Fluorescentes/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
18.
J Vis Exp ; (111)2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27213771

RESUMO

Historically, most cellular processes have been studied in only 2 dimensions. While these studies have been informative about general cell signaling mechanisms, they neglect important cellular cues received from the structural and mechanical properties of the local microenvironment and extracellular matrix (ECM). To understand how cells interact within a physiological ECM, it is important to study them in the context of 3 dimensional assays. Cell migration, cell differentiation, and cell proliferation are only a few processes that have been shown to be impacted by local changes in the mechanical properties of a 3-dimensional ECM. Collagen I, a core fibrillar component of the ECM, is more than a simple structural element of a tissue. Under normal conditions, mechanical cues from the collagen network direct morphogenesis and maintain cellular structures. In diseased microenvironments, such as the tumor microenvironment, the collagen network is often dramatically remodeled, demonstrating altered composition, enhanced deposition and altered fiber organization. In breast cancer, the degree of fiber alignment is important, as an increase in aligned fibers perpendicular to the tumor boundary has been correlated to poorer patient prognosis(1). Aligned collagen matrices result in increased dissemination of tumor cells via persistent migration(2,3). The following is a simple protocol for embedding cells within a 3-dimensional, fibrillar collagen hydrogel. This protocol is readily adaptable to many platforms, and can reproducibly generate both aligned and random collagen matrices for investigation of cell migration, cell division, and other cellular processes in a tunable, 3-dimensional, physiological microenvironment.


Assuntos
Colágeno , Matriz Extracelular , Animais , Movimento Celular , Colágeno Tipo I , Géis , Humanos
19.
Int J Biochem Cell Biol ; 59: 111-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25478651

RESUMO

The role of Rho family GTPases in controlling the actin cytoskeleton and thereby regulating cell migration has been well studied for cells migrating on 2D surfaces. In vivo, cell migration occurs within three-dimensional matrices and along aligned collagen fibers with rather different spatial requirements. Recently, a handful of studies coupled with new approaches have demonstrated that Rho GTPases have unique regulation and roles during cell migration within 3D matrices, along collagen fibers, and in vivo. Here we propose that migration on aligned matrices facilitates spatial organization of Rho family GTPases to restrict and stabilize protrusions in the principle direction of alignment, thereby maintaining persistent migration. The result is coordinated cell movement that ultimately leads to higher rates of metastasis in vivo.


Assuntos
Movimento Celular , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias/enzimologia , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais
20.
Biophys J ; 107(11): 2546-58, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25468334

RESUMO

Patients with mammographically dense breast tissue have a greatly increased risk of developing breast cancer. Dense breast tissue contains more stromal collagen, which contributes to increased matrix stiffness and alters normal cellular responses. Stromal collagen within and surrounding mammary tumors is frequently aligned and reoriented perpendicular to the tumor boundary. We have shown that aligned collagen predicts poor outcome in breast cancer patients, and postulate this is because it facilitates invasion by providing tracks on which cells migrate out of the tumor. However, the mechanisms by which alignment may promote migration are not understood. Here, we investigated the contribution of matrix stiffness and alignment to cell migration speed and persistence. Mechanical measurements of the stiffness of collagen matrices with varying density and alignment were compared with the results of a 3D microchannel alignment assay to quantify cell migration. We further interpreted the experimental results using a computational model of cell migration. We find that collagen alignment confers an increase in stiffness, but does not increase the speed of migrating cells. Instead, alignment enhances the efficiency of migration by increasing directional persistence and restricting protrusions along aligned fibers, resulting in a greater distance traveled. These results suggest that matrix topography, rather than stiffness, is the dominant feature by which an aligned matrix can enhance invasion through 3D collagen matrices.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Colágeno/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Feminino , Géis , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...